Расчет столбчатых фундаментов металлического каркаса

Расчет столбчатых фундаментов металлического каркаса

Уважаемые коллеги, продолжаем рассматривать небольшие примеры использования ФОК Комплекс для расчета фундаментов. Сегодня мы рассмотрим примеры расчета столбчатых фундаментов металлического каркаса. В начале произведем ручной расчет 2-х фундаментов с дальнейшим сравнением с полученными результатами по ФОК Комплекс.

Пример расчета столбчатых фундаментов. Исходные данные

Пример расчета столбчатых фундаментов Пример расчета столбчатых фундаментов

Площадка строительства характеризуется следующими атмосферно-климатическими воздействиями и нагрузками:

  • вес снегового покрова (расчетное значение) - 240 кг/м2;
  • давление ветра — 38 кг/м2;

Геология

Пример расчета столбчатых фундаментов. Характеристики грунтов Схема маркировки фундаментов


Относительная разность осадок (Δs/L)u = 0,004;
Максимальная Sumax или средняя Su осадка = 15 см;
Нагрузки на столбчатые фундаменты получены из ПК ЛИРА.
Для ручного расчета рассмотрим фундаменты Фм3 и Фм4

Ручной расчет

Определение размеров подошвы фундамента

Основные размеры подошвы фундаментов определяем исходя из расчета оснований по деформациям. Площадь подошвы предварительно определим из условия:

PR,

где P- среднее давление по подошве фундамента, определяем по формуле:

P = ( N0 / A )
N0 = P · A

A - площадь подошвы фундамента.

N0 = N +G

N – вертикальная нагрузка на обрезе фундамента

G – вес фундамента с грунтом на уступах

G = A · γ · d

где γ - среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое равным 2 т/м3;

d - глубина заложения;

P · A = N + A · γ · d

A · (P - γ · d ) = N

A = N / (P - γ · d )

Для предварительного определения размеров фундаментов, P определяем по таблице В.3 [СП 22.13330.2011]

Р = 250 кПа = 25,48 т/м2.

Для фундамента Фм3, N = 35,049 т

A = 35,049 т / (25,48 т/м2 - 2,00 т/м3 · 3,300 м) = 35,049 т/18,88 т/м2 = 1,856 м2.

A = b2

Принимаем габариты фундамента b = 1,5 м

Для фундамента Фм4, N = 57,880 т

A = 57,880 т / (25,48 т/м2 - 2,00 т/м3 · 3,300 м ) = 57,880 т / 18,88 т/м2 = 3,065 м2.

A = b2

Принимаем габариты фундамента b = 1,8 м

1. Определение расчетного сопротивления грунта основания

5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле

Формула 5.7

где γс1 и γс2 коэффициенты условий работы, принимаемые по таблице 5.4[1];

k- коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φп и сп) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б[1];

Mγ, Мq, Mc- коэффициенты, принимаемые по таблице 5.5[1];

kz- коэффициент, принимаемый равным единице при b<10 м; kz=z0/b + 0,2 при b ≥ 10 м (здесь z0 = 8 м);

b- ширина подошвы фундамента, м (при бетонной или щебеночной подготовке толщиной hn допускается увеличивать b на 2hn);

γII- осредненное (см. 5.6.10 [1]) расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м3;

γ'II - то же, для грунтов, залегающих выше подошвы фундамента, кН/м3;

сII- расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10[1]), кПа;

d1- глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8)[1]. При плитных фундаментах за d1принимают наименьшую глубину от подошвы плиты до уровня планировки;

db- глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м);

Формула 5.8

здесь hs- толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf - толщина конструкции пола подвала, м;

γcf - расчетное значение удельного веса конструкции пола подвала, кН/м3.

При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1на hn.

Примечания

1 Формулу (5.7)[1] допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, значение bпринимают равным .

2 Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (5.7)[1] допускается принимать равными их нормативным значениям.

3 Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием, например фундаменты прерывистые, щелевые, с промежуточной подготовкой и др.

4 Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать, применяя коэффициент kd по таблице 5.6 [1].

5 Если d1>d (d- глубина заложения фундамента от уровня планировки), в формуле (5.7)[1] принимают d1 = d и db = 0.

6 Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1)[1] и (В.2)[1] с учетом значений R0 таблиц B.1-В.10[1] приложения B[1], допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6[1].

Исходные данные:

Основание фундаментом являются - суглинком лессовидным непросадочным полутвёрдой консистенции, желто-бурого цвета, с включением прослоев супеси, ожелезненный. (ИГЭ 2)

γс1= 1,10;

γс2= 1,00;

k= 1,00;

kz= 1,00;

Для фундамента Фм3 : b = 1,50 м;

Для фундамента Фм4 : b = 1,80 м;

γII = 1,780 т/м3;

γ'II = 1,691 т/м3;

сII= 1,100 т/м2;

d1 = 3,30 м;

db = 0,0 м;

Mγ = 0,72;

Мq= 3,87;

Mc= 6,45;

Для фундамента Фм3:

R = (1,10 ·1,00) / 1,00· [0,72 · 1,00 · 1,50 м · 1,780 т/м3 + 3,87· 3,30 м· 1,691 т/м3 +

+ (3,87 – 1,00) · 0,0· 1,691 т/м3 + 6,45·1,1 т/м2] = 1,10· (1,922 т/м2 +21,596 т/м2 +

+ 0,0 + 7,095 т/м2) = 33,674 т/м2.

Для фундамента Фм4:

R = (1,10 ·1,00) / 1,00 · [0,72 · 1,00 · 1,80 м·1,780 т/м3 + 3,87 · 3,30 м·1,691 т/м3 +

+ (3,87 – 1,00) ·0,0·1,691 т/м3 + 6,45·1,1 т/м2] = 1,10 · (2,307 т/м2 + 21,596 т/м2 +

+ 0,0 + 7,095 т/м2) = 34,098 т/м2.

2. Определение осадки

5.6.31 Осадку основания фундамента s, см, с использованием расчетной схемы в виде линейно деформируемого полупространства (см. 5.6.6[1]) определяют методом послойного суммирования по формуле

ормула 5.16

где b - безразмерный коэффициент, равный 0,8;

σzp,i - среднее значение вертикального нормального напряжения (далее - вертикальное напряжение) от внешней нагрузки в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента (см. 5.6.32[1]), кПа;

hi - толщина i-го слоя грунта, см, принимаемая не более 0,4 ширины фундамента;

Ei - модуль деформации i-го слоя грунта по ветви первичного нагружения, кПа;

σzγ,i - среднее значение вертикального напряжения в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента, от собственного веса выбранного при отрывке котлована грунта (см. 5.6.33[1]), кПа;

Ее,i - модуль деформации i-го слоя грунта по ветви вторичного нагружения, кПа;

n - число слоев, на которые разбита сжимаемая толща основания.

При этом распределение вертикальных напряжений по глубине основания принимают в соответствии со схемой, приведенной на рисунке 5.2.

Вертикальные напряжения по глубине основания

DL - отметка планировки; NL - отметка поверхности природного рельефа; FL - отметка подошвы фундамента; WL - уровень подземных вод; В, С - нижняя граница сжимаемой толщи; d и dn - глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b - ширина фундамента; р - среднее давление под подошвой фундамента; szg и szg,0 - вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; σzp и σzp,0 - вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; σzγ,i - вертикальное напряжение от собственного веса вынутого в котловане грунта в середине i-го слоя на глубине z от подошвы фундамента; Нс - глубина сжимаемой толщи

Рисунок 5.2 - Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве

Примечания:

1 При отсутствии опытных определений модуля деформации Ее,i для сооружений II и III уровней ответственности допускается принимать Ее,i = 5Еi.

2 Средние значения напряжений σzp,i и σzγ,i в i-м слое грунта допускается вычислять как полусумму соответствующих напряжений на верхней zi-1 и нижней zi границах слоя.

5.6.32 Вертикальные напряжения от внешней нагрузки σzp = σz - σzu зависят от размеров, формы и глубины заложения фундамента, распределения давления на грунт по его подошве и свойств грунтов основания. Для прямоугольных, круглых и ленточных фундаментов значения szp, кПа, на глубине z от подошвы фундамента по вертикали, проходящей через центр подошвы, определяют по формуле

σzp = αp, (5.17)[1]

где α - коэффициент, принимаемый по таблице 5.8[1] в зависимости от относительной глубины ξ, равной 2z/b;

р - среднее давление под подошвой фундамента, кПа.

5.6.33 Вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента σ = σ - σzu, кПа, на глубине z от подошвы прямоугольных, круглых и ленточных фундаментов определяют по формуле

σzγ = ασzγ,0, (5.18)[1]

где α - то же, что и в 5.6.32[1];

szg,0 - вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента, кПа (при планировке срезкой σzg,0 = γ'd, при отсутствии планировки и планировке подсыпкой σzγ,0 = γ'dn, где γ' - удельный вес грунта, кН/м3, расположенного выше подошвы; d и dn, м, - см. рисунок 5.2[1]).

При этом в расчете σzγ используются размеры в плане не фундамента, а котлована.

5.6.34 При расчете осадки фундаментов, возводимых в котлованах глубиной менее 5 м, допускается в формуле (5.16) не учитывать второе слагаемое.

5.6.41 Нижнюю границу сжимаемой толщи основания принимают на глубине z = Нc, где выполняется условие σzp = 0,5σ. При этом глубина сжимаемой толщи не должна быть меньше Нmin, равной b/2 при b ≤ 10 м, (4 + 0,1b) при 10 ≤ b ≤ 60 м и 10 м при b > 60 м.

Если в пределах глубины Нс, найденной по указанным выше условиям, залегает слой грунта с модулем деформации Е > 100 МПа, сжимаемую толщу допускается принимать до кровли этого грунта.

Если найденная по указанным выше условиям нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е ≤ 7 МПа или такой слой залегает непосредственно ниже глубины z = Нс, то этот слой включают в сжимаемую толщу, а за Нс принимают минимальное из значений, соответствующих подошве слоя или глубине, где выполняется условие σzp = 0,2szγ.

При расчете осадки различных точек плитного фундамента глубину сжимаемой толщи допускается принимать постоянной в пределах всего плана фундамента (при отсутствии в ее составе грунтов с модулем деформации Е > 100 МПа).

Схема расположения фундамента в разрезе

Площадь подошвы фундамента Фм3: S = 2,25 м2 (габариты 1,50 м × 1,50 м).

Нормативная нагрузка от конструкций N = 29,208 т

P0 = N / S = 29,208 т / 2,25 м2 ≈ 12,98т/м2.

η = 1,50 / 1,50 = 1,0

при b = 1,5 м ≤ 10 м

Hmin > b / 2 = 1,5 м / 2 = 0,75 м

Таблица: Осадка фундамента Фм3

Осадка фундамента Фм3

Сжимаемая толща основания H = 2,00 м > Hmin = 0,75 м

Осадка фундамента: S = 0,8·0,049 м = 0,0392 м (3,92 см) < 15 см (Приложение Д.[1])

Площадь подошвы фундамента Фм4: S = 3,24 м2 (габариты 1,80 м × 1,80 м).

Нормативная нагрузка от конструкций N = 47,598 т

P0 = N / S = 47,598 т / 3,24 м2 ≈ 14,69т/м2.

η = 1,80 / 1,80 = 1,0

при b = 1,8 м ≤ 10 м

Hmin > b / 2 = 1,8 м / 2 = 0,9 м

Таблица: Осадка фундамента Фм4

Осадка фундамента Фм4 34.jpg

Сжимаемая толща основания H = 2,00 м > Hmin = 0,90 м

Осадка фундамента: S = 0,8· 0,061 м = 0,0488 м (4,88 см) < 15 см (Приложение Д. [1])

3. Определяем армирование подошвы фундамента

Для фундамента Фм3

Поперечная сила у грани колонны и грани подошвы (2.25) [2]:

ppср = N0 / A = (35,049 т + 2,00 т/м3 · 3,300 м · 1,500 м · 1,500 м) / (2,250 м2) =

= 49,899 т / 2,250 м2 = 22,177 т/м2

QI = 22,177 т/м2 · 1,50 м · ( 1,50 м – 0,40 м) / 2 = 18,296025 т

QII = 22,177 т/м2 · 1,50 м · ( 1,50 м – 0,90 м) / 2 = 9,97965 т

Проверяем выполнение условий (2.26)[2], для бетона класса В15,

Rbt = 76,453 т/м3.

18,296025 т < 0,6 · 76,453 т/м2 · 1,5 м · (3,600 м – 0,040 м)

18,296025 т < 244,955412 т

9,97965 т < 0,6 · 76,453 т/м2 · 1,5 м · (0,300 м – 0,040 м)

9,97965 т < 17,890 т

Условия выполняются, поэтому установка поперечной арматуры не требуется и расчет на поперечную силу не производится.

Определяем изгибающие моменты у грани колонны и у грани подошвы по формуле (2.31)[2]

МI = 0,125 · 22,177 т/м2 · (1,50 м – 0,40 м)2 · 1,50 м = 5,0314 тм

МII = 0,125 · 22,177 т/м2 · (1,50 м – 0,90 м)2 · 1,50 м = 1,4969 тм

В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м2.

Требуемая площадь сечения арматуры по формуле (2.32)[2]

АsI = 5,0314 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м2) =

= 5,0314 тм / 119211,00372 т/м2 = 0,000042 м2 = 0,42 см2.

АsII = 1,4969 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м2) =

= 1,4969 тм / 8706,421 т/м2 = 0,000172 м2 = 1,72 см2.

Принимаем 8 Ø10 A-III Аs = 6,280 см2, шаг 200 мм.

Для фундамента Фм4

Поперечная сила у грани колонны и грани подошвы (2.25) [2]:

ppср = N0 / A = (57,880 т + 2,00 т/м3 · 3,300 м · 1,800 м · 1,800 м) / (3,240 м2) =

= 79,264 т / 3,240 м2 = 24,464 т/м2

QI = 24,464 т/м2 · 1,80 м · ( 1,80 м – 0,40 м) / 2 = 30,82464 т

QII = 24,464 т/м2 · 1,80 м · ( 1,80 м – 0,90 м) / 2 = 19,81584 т

Проверяем выполнение условий (2.26)[2], для бетона класса В15,

Rbt = 76,453 т/м3.

30,82464 т < 0,6 · 76,453 т/м2 · 1,8 м · (3,600 м – 0,040 м)

30,82464 т < 293,94649 т

19,81584 т < 0,6 · 76,453 т/м2 · 1,8 м · (0,300 м – 0,040 м)

19,81584 т < 21,468 т

Условия выполняются, поэтому установка поперечной арматуры не требуется и расчет на поперечную силу не производится.

Определяем изгибающие моменты у грани колонны и у грани подошвы по формуле (2.31)[2]

МI = 0,125 · 24,464 т/м2 · (1,80 м – 0,40 м)2 · 1,80 м = 17,050 тм

МII = 0,125 · 24,464 т/м2 · (1,80 м – 0,90 м)2 · 1,80 м = 4,458 тм

В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м2.

Требуемая площадь сечения арматуры по формуле (2.32)[2]

АsI = 17,054 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м2) =

= 17,054 тм / 119211,00372 т/м2 = 0,000143 м2 = 1,43 см2.

АsII = 4,458 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м2) =

= 4,458 тм / 8706,421 т/м2 = 0,000512 м2 = 5,12 см2.

Принимаем 9 Ø10 A-III Аs = 7,065 см2, шаг 200 мм.

Относительная разность осадок (4,88 см – 3,92 см) / 600 см = 0,0016 < 0,004

Ручной расчёт фундамента. Результаты

Расчет по программе «ФОК-Комплекс»

Исходные данные для «ФОК-Комплекс»Схема расположения фундаментов и их маркировка


Схема расположения фундаментов и их маркировка Схема расположения фундаментов и их маркировка 3 Фундамент в разрезе

15.jpg

16.jpg

17.jpg

18.jpg

19.jpg

20.jpg

Результаты

21.jpg 22.jpg 23.jpg 24.jpg 25.jpg 26.jpg 27.jpg 28.jpg 29.jpg 30.jpg 31.jpg

Выводы

Сведем в таблицу полученные варианты расчета столбчатых фундаментов

32.jpg

Как видно, результаты по ручному расчету не сильно отличается от результатов ФОК Комплекс, но при ручном вычислении, мы я не проверял на продавливание, на ширину раскрытия трещин и т.д., а при необходимо посчитать большое количество фундаментов (столбчатых, ленточных, на свайном основании), ручной расчет становится громоздким. Ручной расчет я использую, если нет под рукой программ или необходимо проверить полученные результаты по программе. Использование бесплатных программ возможно, но желательно чтобы они выдавали развернутые результаты, а платные программы должны быть сертифицированными. На данные момент ФОК Комплекс помогает производить расчет фундаментов, сразу введя весь план фундаментов (разных типов), но и выдать чертежи.

Список использованной литературы

  1. СП 22.13330.2012 "Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*" M., Стройиздат, 2011
  2. М.Б.Берлинов, Б.А.Ягупов "Примеры расчеты оснований и фундаментов" M.,
  3. Стройиздат, 1986

Продукты: ФОК комплекс

Остались вопросы по теме публикации? Получите консультацию нашего специалиста

* - обязательные поля